Compact pressure switch IP 65, for high pressure ranges Model PCS-HP

(Ex) SILV PG

Applications

- Pressure monitoring and direct switching of electrical loads
- For measuring points with limited space
- For gaseous and liquid, aggressive and highly viscous or contaminated media, also in aggressive ambience
- Process industry: chemical/petro-chemical, on- and offshore, technical gases, environmental technology, machine building and general plant construction, water treatment, pharmaceutical industry

Special features

■ Ingress protection IP 65, NEMA 4

- Ambient temperature $-40 \ldots+85^{\circ} \mathrm{C}$
- 1 switch point, SPDT or DPDT with a high contact rating of up to 15 A / AC 220 V
- Setting ranges up to 600 bar, max. test pressure up to 700 bar

Description

These high-quality pressure switches have been specifically developed for safety-critical applications with limited space. High quality and product manufacturing to ISO 9001:2000 ensures reliable monitoring of your plant. In production, the switches are traced by quality assurance software at every step and subsequently are 100% tested.
The gauge adapters are made of stainless steel, the diaphragm is, depending on the measuring range and the sensor code, made of Inconel or coated with NBR or PTFE. Each switch family is available in IP 65, Ex-ia or Ex-d versions (Ex-ia see model PCA-HP, data sheet PV 33.33).

In order to ensure as flexible operation as possible, the pressure switches are equipped with micro switches, which make it possible to switch an electrical load of up to $15 \mathrm{~A} /$ AC 220 V directly. For smaller contact ratings, such as for PLC applications, argon gas filled micro switches with gold-plated contacts can be selected as an option. For two separate circuits the switches are also available in the version DPDT (double change-over contact).

By using a diaphragm with an antagonist spring, the model PCS-HP pressure switch is extremely robust and guarantees optimal operating characteristics.

Standard version

Case

Aluminium, epoxy resin coated,
case cover with screw-type cover, due to anti-twist device
secured against unauthorised intervention
Ingress protection
IP 65 per EN 60529 / IEC 529

Permissible temperature

Ambient: $-40 \ldots+85^{\circ} \mathrm{C}$
Medium:
Sensor code P (with FPM O-ring): $0 \ldots+250^{\circ} \mathrm{C}$
Sensor code P (with NBR O-ring): $-10 \ldots+110^{\circ} \mathrm{C}$
Sensor code G: $-40 \ldots+140^{\circ} \mathrm{C}$

Process connection

Stainless steel, lower mount (LM)
$1 / 4$ NPT (female)

Measuring system

Sensor code P: Piston system
Sensor code G: Diaphragm with antagonist spring

Wetted parts

Sensor code	Measuring system
P	Stainless steel 316, sealing FPM ${ }^{1)}$
G	Hastelloy C276

1) Option with sealing NBR

Switch contacts

| Code Type | Design | Electrical rating
 (resistive load) |
| :--- | :--- | :--- | :--- |
| 1 AC | | |

3) Simultaneous triggering within 2% of span
4) Only the underlined data are shown on the product label

Repeatability

$\leq 1 \%$ of span

Setting ranges, max. test pressure, max. switch hysteresis

Sensor code	Setting range in bar	Working range in bar	Max. test pressure in bar	Max. switch Contact code 1, 3 and 5	teresis Contact code 2	Contact code 4
P, G	8 ... 40	0 ... 100	400	2 bar	4 bar	16 bar
P, G	16 ... 100	0 ... 250	400	5 bar	5 bar	20 bar
P, G	40 ... 250	0 ... 400	600	12 bar	20 bar	80 bar
P, G	80 ... 400	0 ... 600	600	20 bar	20 bar	80 bar
P, G	$100 . . .600$	0 ... 600	700	30 bar	30 bar	120 bar

Switch points

The switch points can be set to your requirements, free-ofcharge.

Please specify:

Switch point, switching direction (e.g. switch point 1: 0.5 bar, falling)

After unscrewing the case cover, switch point adjustment can be made using the adjustment screw. The switch point is settable within the entire measuring range with the following

general rule:

- Define the value $\mathrm{A}=2 \mathrm{x}$ repeatability + switch hysteresis
- If the pressure is rising, the switch point should be set between (min. + value A) up to max. of the setting range.
- If the pressure is falling, the switch point should be set between min. up to (max. - value A) of the setting range.

Example:

Setting range: $0 \ldots 1$ bar with one switch contact
Repeatability: 1% of $1 \mathrm{bar}=10 \mathrm{mbar}$
Switch hysteresis = 15 mbar (see table setting ranges)
Value $A=2 \times 10 \mathrm{mbar}+15 \mathrm{mbar}=35 \mathrm{mbar}$
If the pressure is rising, the switch point should be set between 35 mbar up to 1 bar.
If the pressure is falling, the switch point should be set between 0 up to 965 mbar.
For optimal performance we suggest the switch point lies between 25% and 75% of the setting range.

Electrical connection

$1 / 2$ NPT female, cable connection using internal terminal block, ground connection using internal and external screw, max. ground cable cross-section 4 mm 2

Pressure switch certified per:

■ Pressure equipment directive 97/23/EC (PED, annex 1 , category IV, safety accessories, module B + D)

- Low voltage directive 73/23 EEC and 93/68 EEC

Dielectric strength

Safety class I (EN 61298-2: 1997-06)

Mounting

Direct or wall mounting
Preferred connection location of the process connection should be below. Alternatively the instrument can be installed so that access to internals is from front of the enclosure and the electrical connection is placed on side.

Options

- Other process connection, also with adapter
- Case made of stainless steel 316
- Electrical connection 3/4 NPT, G $1 / 2$ or M20 $\times 1.5$ (female)
- Cable gland on request
- 2" pipe-mounting kit (with clamping element)

■ Version for off-shore ${ }^{5}$) or tropicalised application ${ }^{5)}$

- Version for applications to NACE 5) 6)
- Version for ammonia applications ${ }^{5)}$
- Oil and grease free version for oxygen applications
- Version to

GAS Ex-ia DUST Ex-iaD Gr. II Cat. 1 GD 5)
Electrical characteristics: Ui $=30 \mathrm{~V}$
$\mathrm{li}=100 \mathrm{~mA}$
$\mathrm{Pi}=0.75 \mathrm{~W}$
$\mathrm{Ci}=0 \mu \mathrm{~F}$
$\mathrm{Li}=0 \mathrm{mH}$

- Accessories:
- Pressure gauge valves model 910.11, see data sheet AC 09.02
- Barstock valves model 910.81, see data sheet AC 09.18

5) Inert gas filled contacts required
6) Only in connection with sensor code G

Approvals and certificates

- SIL 2 version ${ }^{5)}$
- GOST-R certificate
- Test certificate *CA* (confirmation of the switching accuracy)
- Test report *CP* (3-time listing of the switch point, requires switch point specification)
- Material certificate 3.1 per EN 10204

Weight

approx. 1.0 kg

Dimensions in mm

Ordering information

Model / Case / Sensor code / Switch contacts with version / Setting range / Process connection / Electrical connection / Switch point / Switching direction / Options

Example: PCS 2 P1-8/40 bar - 1/4"NPT-F - 1/2"NPT-F

WIKA

WIKA Alexander Wiegand SE \& Co. KG
Alexander-Wiegand-Straße 30
63911 Klingenberg/Germany
Tel. (+49) 9372/132-0
Fax (+49) 9372/132-406
E-mail info@wika.de
www.wika.de

